
FIRMWARE OBFUSCATION V1.0 1

Firmware Obfuscation

Default Hash Function

The default hash function is defined as the following C# function:
static byte[] Hash(byte[] msg)
{
 UInt128 state = 1;
 byte[] block;
 int i;

 // Create hash value (compression function)
 for (i = 0; i < msg.Length; i++) state += (state << 8) + (msg[i] + 1);
 block = BitConverterEx.GetBytes(state);
 if (BitConverter.IsLittleEndian) Array.Reverse(block);

 // Diffuse hash value (kind of)
 for (i = block.Length-2; i >= 0; i--) block[i] ^= block[i + 1];
 return block;
}

The internal state si of the compression function is defined with its previous value si-1 and the
current message byte Mi as follows:

s i=((257⏟
prime number p

⋅si−1)+(M i+1⏟
1...256< p

))mod 2128

General Message Authentication Code

A number message num(i), which can be represented with the bytes i3, i2, i1, and i0 with i = i3 · 256³
+ i2 · 256² + i1 · 256 + i0, is defined as the byte sequence (i0) for i < 255, or (255, i0, i1) for i <
65535, or (255, 255, 255, i0, i1, i2, i3) otherwise.

A length extension method is defined as follows:

length(M) = length in bytes of message M

len(M) = num(length(M)) || M

The helper function MACSK(s, …) is defined as follows:

MACSK(s, …) = hash(0 || hash(num(s) || len(K) || len(N) || num(t) || len(M))),
for length(N) > 0

or

MACSK(s, …) = hash(0 || hash(num(s) || len(K) || 0 || num(t) || num(d))),
for length(N) = 0

with

hash function hash(M) of message M,
zero byte 0,
segment number s starting with 1,
key K,
nonce N,
type t (or t = message number i),
message M,
device number d, or d = 0 for a missing device number

2019-08-02

FIRMWARE OBFUSCATION V1.0 2

The general MAC (= message authentication code) is defined as follows:

MACK(args) = truncatel(MACSK(1, args) || MACSK(2, args) || MACSK(3, args) || …)

with

list of arguments args

truncatel(M) = truncate the message M after l bits, or after 128 bits if l is zero

Missing function arguments are taken either as byte sequences of size 0, or as the value 0.

MAC as Block Permutation

If the default hash function is used, the 128-bit block permutation Permutation128 is allowed to be
implemented with a hash function as follows:

Permutation128K(P) = MACK(N=P, l=8·length(hash))

If a more secure hash function than the default hash function is used, the 128-bit block permutation
Permutation128 is allowed to be implemented with a hash function as follows:

Permutation128K(M) = hash(K || M)

Firmware Obfuscation (Generic Algorithm)

The firmware, including DRM, is defined as a sequence of blocks Mi (for i = 0, 1, ..., n-1). A 128-bit
block permutation (or a hash function) Permutation128 is chosen for the obfuscation, which is run
inside the CTR mode of operation with a 64-bit nonce, a 32-bit message index i, and a 32-bit
counter. Index i and counter are starting with zero and use the little Endian format. The counter is
incremented by 1 for the next block.

Ci = Permutation128-CTRK
N(Mi) with N = 32-bit-counter || 32-bit-index-i || 64-bit-nonce

Firmware Obfuscation (with MAC)

The firmware, including DRM, is defined as a sequence of blocks Mi (for i = 0, 1, ..., n-1). The
obfuscation is defined by:

Ci = MACK(N=nonce, t=i, l=8·length(Mi)) ⊕ Mi

with a 64-bit nonce.

2019-08-02

FIRMWARE OBFUSCATION V1.0 3

TSF Stream Format (Light Version)

A tagged stream format is a binary stream representation with a NUL terminated collection of
nested, sorted and unambiguously tagged data items. The data of a missing item is set to zero (or an
empty string).

A flexible number is defined with a single byte. If this byte equals 0ff16, then the next two bytes
represent the flexible number. If these next two bytes equal 0ffff16, then the next four bytes represent
the flexible number, and so on. Flexible numbers are prefixed with num.

An id represents a strictly monotonically increasing non-zero identification number within a NUL
terminated object collection sequence. The id with number 31 is reserved.

Identified objects consist of an id byte and object data. An id byte consists of the id field (higher
significant 5 bits) and of the type field (lower significant 3 bits):

id = 0 type = 0 Zero tag

id = 0 type = 1 4-byte header (indicating little Endian): 0116 e116 7416 7316

id = 0 type > 1 Reserved

id > 0 type = 0 Data size: 1 byte
id > 0 type = 1 Data size: 2 bytes

id > 0 type = 2 Data size: 4 bytes
id > 0 type = 3 Data size: 8 bytes

id > 0 type = 4 Data size is defined by numDataSize; subsequent items: <numDataSize>
id > 0 type = 5 Object collection vector of length 1 until zero tag; subsequent items: <objs[0]>

id > 0 type = 6 Object collection vector; subsequent items: <numCount><objs[0]><objs[1]>...
id > 0 type = 7 Reserved
The last zero tag may be omitted for TSF fragments.

Used Data Types

BYTE array[] Sequence of bytes (whose length is given by the stream)

BYTE0 array[] Sequence of bytes (whose length is given by the stream). This entry must not be
omitted if it contains only zeros.

UINT uint Unsigned integer (whose size is given by the stream)

Collection[] A missing data type marks an identified object collection. Postfixed void
brackets mark a vector (whose size is given by the stream) of NUL terminated
identified object collections.

Documentation

A document with TSF format is described as follows:

#1 #2 #3 #4 Object name Description
#1: Id at lowest level (root node is reachable via one leaf)
#2: Id of an embedded object (root node is reachable via two leaves)
#3: Id of an embedded object (root node is reachable via three leaves)
#4: Id of an embedded object (root node is reachable via four leaves)

2019-08-02

FIRMWARE OBFUSCATION V1.0 4

Composition of the First Obfuscated Sequence Block (Nonce || T0 || C0)

BYTE Nonce[8] 64-bit nonce

BYTE T0[TLen] Authenticated message digest of C0 (with default value for TLen =
MIN(sizeof(hash) / 2, 16)

BYTE C0[] Obfuscated TSF fragment (= first obfuscated sequence block M0)

C0: Obfuscated TSF fragment without header in little Endian format M0.
[Assumption: Header = 0116 e116 7416 7316 / Id = 134 / Version = 0.0]

2 UINT Signature = 0x0b7c1f9a (optional)

3 Info

3 UINT Id

5 UINT Features

7 UINT MajorVersion DWORD dwVersion =
(MajorVersion << 24) + (MinorVersion<<16) + Revision;9 UINT MinorVersion

11 UINT Revision

13 UINT Build

15 UINT Config

17 UINT Date (= UnixTime)

25 BYTE Description[]

27 BYTE Name[]

29 BYTE Version[] Version string (with "V" at the beginning)

5 Drm[] DRM single test (which all have to be satisfied)

3 UINT Type Type:

 0 – Manufacturer Id
 1 – Hardware Id
 2 – Hardware Version
 3 – Internal Device Number
 4 – Device Number
 5 – Customer Id
 6 – Manufacturing Date (= UnixTime)
 64 – Hardware Features

5 UINT Min MinMax.Min = Min

7 UINT Max MinMax.Max = Max

9 UINT MinMax MinMax.Min = MinMax.Max = MinMax

11 UINT XorMask Features.XorMask = XorMask

13 UINT ReqFeatures Features.ReqFeatures = ReqFeatures

7 UINT EraseRegions Bit mask:

1 – Clear total memory area
2 – Clear application memory area

2019-08-02

FIRMWARE OBFUSCATION V1.0 5

4 – Clear data memory area

9 EraseList[] Regions may not overlap and must be sorted upwards.
They must not include the bootloader area. Regions of
zero size will be ignored.

3 UINT StartAddress

5 UINT Length

15 MemoryArea[] Regions may not overlap and must be sorted upwards.
They must not include the bootloader area. Regions of
zero size will be ignored.

17 UINT StartAddress

19 BYTE0 Data[]

DRM single test of type x (e.g. x = Hardware Id):

drmTestFailed =
 (MinMax.Min > 0 && x < MinMax.Min) ||
 (MinMax.Max > 0 && x > MinMax.Max) ||
 (((x ^ Features.XorMask) & Features.ReqFeatures) !=
 Features.ReqFeatures);

Composition of the Next Obfuscated Sequence Blocks (Ti || Ci)

BYTE Ti[TLen] Authenticated message digest of Ci

BYTE Ci[] Obfuscated TSF fragment (= obfucsated sequence block Mi)

Ci: Obfuscated TSF fragment without header in little Endian format Mi.
[Assumption: Header = 0116 e116 7416 7316 / Id = 134 / Version = 0.0]

15 MemoryArea[] (see above)

17 UINT StartAddress

19 BYTE0 Data[]

Composition of the First Unobfuscated Data Block (H0 || D0)

BYTE H0[HLen] Checksum of D0 with HLen = 4

BYTE D0[] TSF fragment (= data block D0)

D0: TSF fragment without header in little Endian format.
[Assumption: Header = 0116 e116 7416 7316 / Id = 134 / Version = 0.0]

2 UINT32 Signature = 0x0b7c1f9a (optional, see above)

3 Info (see above)

5 Drm[] See above; additional values for type:

129 – Application Id
130 – Application Version
131 – Application Build
132 – Application Config
133 – Application Date (= UnixTime)
192 – Application Features

7 UINT EraseRegions 8 – Clear configuration memory area
 16 – Clear configuration data memory area

2019-08-02

FIRMWARE OBFUSCATION V1.0 6

9 EraseList[] (see above; limited by info area)

15 MemoryArea[] (see above; limited by info area)

Composition of the Next Unobfuscated Data Blocks (Hk || Dk)

BYTE Hk[HLen] Checksum of Dk

BYTE Dk[] TSF fragment (= data block Dk)

Dk: TSF fragment without header in little Endian format.
[Assumption: Header = 0116 e116 7416 7316 / Id = 134 / Version = 0.0]

15 MemoryArea[] (see above)

17 UINT StartAddress

19 BYTE0 Data[]

Firmware File Format

TSF stream in little Endian format with 4-byte header: 0116 e116 7416 7316.

1 StreamInfo

2 UINT Id Id = 134

27 Firmware[]

3 UINT Salt Unique UTC time in seconds since January 1, 1970

5 BYTE0 ObfuscatedInfo[] No obfuscation if the Salt value is missing; the
composition is that of M0;

6 Keys

3 BYTE0
ObfuscationKey[]

7 ObfuscatedBlocks[]

3 BYTE0 Block[]

9 UINT ConfigurationType 0 – first matching configuration
1 – no configuration
2 – index based configuration:
 Configuration[ConfigurationIndex]

11 UINT ConfigurationIndex

29 Configuration[]

25 Sequence[]

5 Drm[]

3 UINT Type

5 UINT Min

7 UINT Max

9 UINT MinMax

11 UINT XorMask

2019-08-02

FIRMWARE OBFUSCATION V1.0 7

13 UINT ReqFeatures

7 UINT EraseRegions

9 EraseList[]

3 UINT StartAddress

5 UINT Length

15 MemoryArea[]

17 UINT StartAddress

19 BYTE0 Data[]

30 UINT Checksum Checksum from tag #1 until tag #29

0

Obfuscation for TSF Item “ObfuscatedInfo”

ObfuscatedInfo may optionally be obfuscated. In this case, ObfuscatedInfo can be obfuscated (and
deobfuscated) with the following C# functions:

static void AddObfuscation(byte[] data, uint salt)
{
 byte[] reference = (byte[])data.Clone();
 uint state = (uint)(3000001321 * salt + 9000000101);
 data[0] ^= (byte)state;
 for (int i = 1; i < data.Length; i++)
 {
 state = (uint)(3000001321 * (state + reference[i-1]) + 9000000101);
 data[i] ^= (byte)(state / 2);
 }
}

static void RemoveObfuscation(byte[] data, uint salt)
{
 uint state = (uint)(3000001321 * salt + 9000000101);
 data[0] ^= (byte)state;
 for (int i = 1; i < data.Length; i++)
 {
 state = (uint)(3000001321 * (state + data[i-1]) + 9000000101);
 data[i] ^= (byte)(state / 2);
 }
}

// RemoveObfuscation:
//
// salt: 1
// data in: bf 4c 52 d1 ab 09 ab 92 44
// data out: 31 32 33 34 35 36 37 38 39 (= "123456789")

Checksum Algorithm

The 32-bit checksum can be obtained with the following C# function:
static public uint ComputeChecksum(byte[] arr, int offset, int len)
{
 uint state = 1;

 for (int i = 0; i < len; i++)
 {
 state += (uint)((state << 8) + (arr[offset + i] + 1));
 }

2019-08-02

FIRMWARE OBFUSCATION V1.0 8

 return state;
}

Tiny Bootloader

The bootloader can be compiled with the tiny bootloader option. In this case, the TSF library will
not be included in the bootloader. Therefore, the obfuscated blocks Ci and Di cannot be in TSF
format. They are instead constructed as follows (by using little Endian byte order):

C0 or D0:

UINT32 Signature = 0xf8139cbd

UINT32 EraseRegions

UINT32 Count Number of DrmItems (1...21)

DrmItems[Count] At least one element with Type == 1 (= hardwareId) is required

DrmItems for (type & 0x40) == 0:

UINT32 Type

UINT32 Min

UINT32 Max

DrmItems for (type & 0x40) != 0:

UINT32 Type

UINT32 XorMask

UINT32 FeatureRequest

Ci or Di (for i > 0):

UINT32 Address

UINT32 Count = 1...256

BYTE Data[Count]

2019-08-02

	Firmware Obfuscation
	Default Hash Function
	General Message Authentication Code
	MAC as Block Permutation
	Firmware Obfuscation (Generic Algorithm)
	Firmware Obfuscation (with MAC)
	TSF Stream Format (Light Version)
	Used Data Types
	Documentation
	Composition of the First Obfuscated Sequence Block (Nonce || T0 || C0)
	Composition of the Next Obfuscated Sequence Blocks (Ti || Ci)
	Composition of the First Unobfuscated Data Block (H0 || D0)
	Composition of the Next Unobfuscated Data Blocks (Hk || Dk)
	Firmware File Format
	Obfuscation for TSF Item “ObfuscatedInfo”
	Checksum Algorithm
	Tiny Bootloader

