
FIRMWARE OBFUSCATION V1.0 – INTERNALS 1

Default Hash Function

The default hash function is defined as the following C# function:
static byte[] Hash(byte[] msg)
{
 UInt128 state = 1;
 byte[] block;
 int i;

 // Create hash value (compression function)
 for (i = 0; i < msg.Length; i++) state += (state << 8) + (msg[i] + 1);
 block = BitConverterEx.GetBytes(state);
 if (BitConverter.IsLittleEndian) Array.Reverse(block);

 // Diffuse hash value (kind of)
 for (i = block.Length-2; i >= 0; i--) block[i] ^= block[i + 1];

 return block;
}

The internal state si of the compression function is defined with its previous value si-1 and the
current message byte Mi as follows:

s i=((257⏟
prime number p

⋅si−1)+(M i+1⏟
1...256< p

))mod 2128

After the hash value creation, the most volatile byte is the last byte of the hash value (assuming big
Endian computation). This byte is successively exclusive ORed with the previous lesser volatile
bytes, yielding the first byte as being the new most volatile byte.
The compression function starts to discard state bits after 15 message bytes have been processed. It
is therefore at least collision resistant for a message length of up to 120 bits.
An alternative hash function is a PRNG (= pseudorandom number generator) which is seeded with
the state after the compression function of the default hash function. The final output value is
exclusive ORed with the seed to address a reversible PRNG.
An alternative keyed hash function is a 128-bit block permutation with the state after the
compression function of the default hash function as input message. The output message is exlusive
ORed with the 128-bit number of message bytes of the default hash function in little Endian format,
followed by a further 128-bit block permutation with the same key. Note that the block of the
compression function is in case of a keyed hash reversed if big Endian computing instead of little
Endian computing is used (for performance reasons).

Default Block Permutation

The default block permutation is defined as the following C# function:

static void ObfuscateBlock(byte[] key, byte[] block)
{
 if (key.Length > 7) throw new ArgumentException();
}

Note that only the forward transformation of a block permutation is used by the bootloader and not
the backward transformation. Hence, a block deobfuscating method is not required.

General Message Authentication Code

A number message num(i), which can be represented with the bytes i3, i2, i1, and i0 with i = i3 · 256³
+ i2 · 256² + i1 · 256 + i0, is defined as the byte sequence (i0) for i < 255, or (255, i0, i1) for i <
65535, or (255, 255, 255, i0, i1, i2, i3) otherwise.

2019-08-02

FIRMWARE OBFUSCATION V1.0 – INTERNALS 2

A length extension method is defined as follows:

length(M) = length in bytes of message M

len(M) = num(length(M)) || M

The helper function MACSK(s, …) is defined as follows:

MACSK(s, …) = hash(0 || hash(num(s) || len(K) || len(N) || num(t) || len(M))),
for length(N) > 0

or

MACSK(s, …) = hash(0 || hash(num(s) || len(K) || 0 || num(t) || num(d))),
for length(N) = 0

with

hash function hash(M) of message M,
zero byte 0,
segment number s starting with 1,
key K,
nonce N,
type t (or t = message number i),
message M,
device number d, or d = 0 for a missing device number

The helper function MACSK(s, …) can optionally be reduced to the inner hash function if the hash
function is Keccak:

MACSK(s, …) = Keccak(num(s) || len(K) || len(N) || num(t) || len(M))
for length(N) > 0

or

MACSK(s, …) = Keccak(num(s) || len(K) || 0 || num(t) || num(d))
for length(N) = 0

The general MAC (= message authentication code) is defined as follows:

MACK(args) = truncatel(MACSK(1, args) || MACSK(2, args) || MACSK(3, args) || …)

with

list of arguments args

truncatel(M) = truncate the message M after l bits, or after 128 bits if l is zero

Missing function arguments are taken either as byte sequences of size 0, or as the value 0. Double
hashing hash(hash(M)) is also used by [1] and by [9], [10]. The concatenated arguments from
MACSK are defined in a way that they can all be parsed back into separate function arguments (see
also [1]). The first zero byte is used to prevent identical arguments for the hash function. If a keyed
hash with Permutation128K is used, the message part len(K) of MACSK is replaced with
len(Permutation128K(0)) in order not to reuse the key for different algorithms directly:

MACSK(s, …) = hashK(0 || hashK(num(s) || len(Permutation128K(0)) || len(N) || num(t) ||
 len(M))),
for length(N) > 0

or

MACSK(s, …) = hashK(0 || hashK(num(s) || len(Permutation128K(0) || 0 || num(t) || num(d))),
for length(N) = 0

2019-08-02

FIRMWARE OBFUSCATION V1.0 – INTERNALS 3

Key Derivation

A master key K is used to derive all the other keys:

Obfuscation key Ko = MACK(t=0, l=56)

Authentication key Ka = MACK(t=1)

Nonce key Kn = MACK(t=2, l=56)

Obfuscated Nonce

The 8 bytes of the deobfuscated nonce N̂=(N̂0 N̂ 1 N̂2 N̂3 N̂4 N̂5 N̂ 6 N̂7) are defined as follows:

N̂ 0 = 255 · Milliseconds part of the UTC timestamp / 999

(N̂ 1 N̂2 N̂ 3 N̂4) = Seconds since January 1, 1970 of the UTC timestamp in little Endian
 format (representable until February 6, 2106)

(N̂ 5 N̂ 6) = User defined 16-bit index in little Endian format

N̂7 = 0 (Reserved)

The obfuscated nonce Nonce is defined with the 64-bit block permutation Permutation64 as
follows:

Nonce=Permutation 64Kn (N̂)

Authenticated Message Digest

The obfuscated message (→ encrypt-then-authenticate, see also [1]) and all other necessary items to
deobfuscate the message are passed into the general MAC (→ Horton Principle, see also [1]):

Ti = MACKa(N=Nonce, M=Ci, t=i)

Cheating (MAC as the 128-bit Block Permutation)

To save programming memory, the 128-bit block permutation Permutation128 is allowed to be
implemented with a hash function (kind of cheating). Though, block doublets for different plaintext
blocks may occur. This is also the reason why a hash function cannot be used as the 64-bit block
permutation which is used only for nonce obfuscation. However, these block doublets are less
troublesome than the default 128-bit block permutation. For performance reasons, the output value
of Permutation128 is allowed to be of the same size as the output value of the hash function.

Permutation128Ko(P) = MACKo(N=P, l=8·length(hash))

Alternatively, as long as a more secure hash function than the default hash function is used,
Permutation128 can also be defined as Permutation128Ko(M) = hash(Ko || M). Note that this
construction is prone to length extension attacks and partial message collision attacks (see also [1]),
but the hash function is not used for authentication.

Cheating (Firmware Obfuscation with MAC)

To save even more programming memory, the following obfuscation algorithm can be defined:

Ci = MACKo(N=Nonce, t=i, l=8·length(Mi)) ⊕ Mi

with a 64-bit Nonce.

2019-08-02

FIRMWARE OBFUSCATION V1.0 – INTERNALS 4

Primitives

I am not a cryptographer, and thus, the following text should be taken with a grain of salt. The
default hash function, the default 128-bit block permutation and the default 64-bit block
permutation of the firmware obfuscation are insecure. They do neither guarantee encryption nor
authentication.

Xorshift128+ is a fast non-cryptographically secure PRNG.

Keccak and Whirlpool are cryptographically secure hash functions.

Camellia and Rijndael are cryptographically secure 128-bit block permutations.

IDEA is a cryptographically secure 64-bit block permutation.

To my knowledge, Xorshift128+, Keccak, Whirlpool (ISO/IEC 10118-3:2004), Camellia (ISO/IEC
18033-3:2010), Rijndael (ISO/IEC 18033-3:2010) and IDEA are neither of US origin nor of
Canadian origin. Therefore, they can be used to protect intellectual property without necessarily
infringing the US Export Control (Note that this also presumes that the implementation of these
algorithms is neither of US origin nor of Canadian origin).

Neither HMAC, CMAC, CBC-MAC, CCM Mode, EAX Mode nor GCM Mode

HMAC, CMAC, CBC-MAC or authenticated obfuscation with either CCM, EAX or GCM mode is of
US origin.

No Hybrid Obfuscation/Encryption

One reason for a symmetric obfuscation/encryption, instead of a hybrid one, is that there is no
benefit if using the latter. Because as soon as the deobfuscating/decryption key is unveiled, the
asymmetric obfuscation/encryption can be read as plaintext, and thus, making a hybrid obfuscation/
encryption needless: An adversary can just reuse the readable symmetric keys and replicate the
unmodified asymmetrically obfuscated/encrypted part. Another reason is that asymmetric obfusca-
tion/encryption is usually of US origin.

No Destruction of the Keys

The keys are never destructed: The generation of the obufscated firmware files is assumed to be
done on a secure computer. The bootloader can also initialize/clear its RAM before calling the
application which is, by the way, not necessarily required, because the keys are also readable from
the microcontroller‘s ROM.

Bibliography

[1] Niels Ferguson, Bruce Schneier, Tadayoshi Kohno. Cryptography Engineering: Design
Principles and Practical Applications. Wiley Publishing, Inc., 2010. ISBN: 978-0-470-
47424-2.

[2] Joan Daemen, Vincent Rijmen. The Design of Rijndael. Springer-Verlag, 2002. ISBN: 3-
540-42580-2.

[3] Tom St Denis, Simon Johnson. Kryptographie für Entwickler. Franzis Verlag GmbH, 2017.
ISBN: 978-3-645-60543-4.

[4] Sebastiano Vigna. Xorshift128+.
http://xoroshiro.di.unimi.it/xorshift128plus.c (Feb. 9, 2019)

2019-08-02

http://xoroshiro.di.unimi.it/xorshift128plus.c

FIRMWARE OBFUSCATION V1.0 – INTERNALS 5

[5] Paulo S. L. M. Barreto. The Whirlpool Hash Function.
https://web.archive.org/web/20171129084214/http://www.larc.usp.br/~pbarreto/
WhirlpoolPage.html (Feb. 12, 2019)

[6] Marco Quinten. C# implementation of Whirlpool.
https://gist.github.com/SplittyDev/43ba394c18c4b86fef9b (Feb. 12, 2019)

[7] Vincent Rijmen. The Rjindael Page.
https://web.archive.org/web/20051228003819/http://www.iaik.tu-graz.ac.at/research/krypto/
AES/old/%7Erijmen/rijndael/ (Feb. 12, 2019)

[8] Bouncy Castle (C# IDEA implementation).
http://www.bouncycastle.org/csharp/ (Jun. 19, 2019)

[9] The Bitcoin Protocol.
https://en.bitcoin.it/wiki/Protocol_documentation (Feb. 17, 2019)

[10] Hashcash.
https://en.bitcoin.it/wiki/Hashcash#Double_Hash (Feb. 20, 2019)

[11] Tagged Stream Format.
https://www.tellert.de/?product=tsf (Jun. 17, 2019)

[12] Chris Doty-Humphrey. Practically Random.
https://sourceforge.net/projects/pracrand/ (Feb. 12, 2019)

[13] Don Ho. Notepad++.
https://notepad-plus-plus.org/ (Feb. 13, 2019)

[14] Maël Hörz. HxD.
https://mh-nexus.de/de/programs.php (Feb. 13, 2019)

[15] TTY Emulator.
https://web.archive.org/web/20110717111702/http://www.ttyemulator.com/InstallerFiles/
TTYEmulPEInstaller.exe (Feb. 13, 2019)

2019-08-02

https://web.archive.org/web/20110717111702/http://www.ttyemulator.com/InstallerFiles/TTYEmulPEInstaller.exe
https://web.archive.org/web/20110717111702/http://www.ttyemulator.com/InstallerFiles/TTYEmulPEInstaller.exe
https://web.archive.org/web/20110717111702/http://www.ttyemulator.com/InstallerFiles/TTYEmulPEInstaller.exe
https://mh-nexus.de/de/programs.php
https://notepad-plus-plus.org/
https://sourceforge.net/projects/pracrand/
https://www.tellert.de/?product=tsf
https://en.bitcoin.it/wiki/Hashcash#Double_Hash
https://en.bitcoin.it/wiki/Protocol_documentation
http://www.bouncycastle.org/csharp/
https://web.archive.org/web/20051228003819/http://www.iaik.tu-graz.ac.at/research/krypto/AES/old/~rijmen/rijndael/
https://web.archive.org/web/20051228003819/http://www.iaik.tu-graz.ac.at/research/krypto/AES/old/~rijmen/rijndael/
https://gist.github.com/SplittyDev/43ba394c18c4b86fef9b
https://web.archive.org/web/20171129084214/http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
https://web.archive.org/web/20171129084214/http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html

	Default Hash Function
	Default Block Permutation
	General Message Authentication Code
	Key Derivation
	Obfuscated Nonce
	Authenticated Message Digest
	Cheating (MAC as the 128-bit Block Permutation)
	Cheating (Firmware Obfuscation with MAC)
	Primitives
	Neither HMAC, CMAC, CBC-MAC, CCM Mode, EAX Mode nor GCM Mode
	No Hybrid Obfuscation/Encryption
	No Destruction of the Keys
	Bibliography

